Număr piramidal pătratic

Un număr pătratic piramidal, pătrat perfect piramidal sau număr pătrat piramidal este un număr figurativ care reprezintă numărul de sfere stivuite într-o piramidă cu o bază pătrată. Numerele pătrat piramidale rezolvă, de asemenea, problema numărului de pătrate dintr-o grilă n × n. Numerele piramidale (cu n laturi triunghiulare) sunt adesea confundate cu numerele pătrat piramidale (cu 4 laturi).
Exemple
Primele numere pătrate piramidale sunt:
Aceste numere pot fi exprimate prin formula:
Acesta este un caz special al formulei lui Faulhaber și poate fi dovedit printr-o inducție matematică.[2] O formulă echivalentă este dată în manuscrisul lui Leonardo Fibonacci, Liber Abaci (1202, ch. II.12).
În matematica modernă, numerele figurate sunt formalizate prin polinoame Ehrhart:
Format:Math.[3]
Funcție generatoare exponențială
Funcția generatoare pentru numerele piramidale este:
Relația cu alte numere
Numerele piramidale pătrate pot fi, de asemenea, exprimate ca suma coeficienților binomiali:
Coeficienții binomiali care apar în această expresie prezentată sunt numere tetraedrice. Această formulă exprimă numerele piramidale ca suma a două numere, la fel ca orice număr pătratic este suma a două numere triunghiulare consecutive. În această sumă, unul dintre cele două numere tetraedrice reprezintă numărul de sfere din piramida pliată care sunt situate deasupra sau pe o parte a diagonalei bazei pătrate a piramidei; iar al doilea - reprezintă numărul de sfere situate pe cealaltă parte a diagonalei. Numerele piramidale sunt, de asemenea, legate de numerele tetraedrice după cum urmează:Format:Sfn:
Suma a două numere piramidale consecutive este un număr octaedric.
Note
- ↑ Format:OEIS
- ↑ Hopcroft, Motwani & Ullman (2007), [[[:Format:Google books]] p. 20]
- ↑ Format:Citation.