Matrice
Format:Altesensuri În matematică, o matrice (plural matrice[1] sau matrici[2]) este un tabel dreptunghiular de numere, sau mai general, de elemente ale unei structuri algebrice de tip inel. Prin generalizare, pot fi definite matrice cele care au mai mult decât 2 dimensiuni, ele numindu-se atunci matrici n-dimensionale. Dacă Format:Mvar, matricea este pătrată.
Definiție
Se numește matrice cu m linii și n coloane (de tip ) un tablou cu Format:Mvar linii și Format:Mvar coloane:
ale cărui elemente sunt numere complexe.
Uneori această matrice se notează cu indici, unde și
Pentru elementul indicele Format:Mvar arată linia pe care se află elementul, iar al doilea indice, Format:Mvar, indică pe ce coloană este situat.
Mulțimea matricilor de tip cu elemente numere reale se notează prin Aceleași semnificații au și mulțimile
Cazuri particulare
1. O matrice de tipul (deci cu o linie și Format:Mvar coloane) se numește matrice linie și are forma:
2. O matrice de tipul (deci cu Format:Mvar linii și o coloană) se numește matrice coloană și are forma:
3. O matrice de tip se numește nulă (sau matrice zero) dacă toate elementele ei sunt zero. Se notează cu O:
4. Dacă numărul de linii este egal cu numărul de coloane, atunci matricea se numește pătrată:
Sistemul de elemente reprezintă diagonala principală a matricei Format:Math, iar suma acestor elemente se numește urma matricei A notată:
Mulțimea matricelor pătrate se notează Printre aceste matrice, una este foarte importantă, aceasta fiind:
și se numește matrice unitate (pe diagonala principală are toate elementele egale cu Format:Math, iar în rest sunt egale cu Format:Math).
Egalitatea a două matrice
Fie , . Se spune că matricele sunt egale și se scrie dacă
Transpusa unei matrice
Fie . Transpusa matricei A este:
- dată de:
Matrice simetrică
Fie matricea pătrată . Se spune că matricea este simetrică dacă este egală cu transpusa ei: :
Operații cu matrice
Adunarea matricelor
Fie
Matricea Format:Mvar se numește suma matricelor Format:Mvar, Format:Mvar dacă:
- Observații.
1. Două matrice se pot aduna dacă sunt de același tip, adică au același număr de linii și același număr de coloane, deci
2. Explicit, adunarea matricelor Format:Mvar înseamnă:
Proprietăți ale adunării matricelor
Asociativitatea adunării. Adunarea matricelor este asociativă, adică:
Comutativitatea adunării. Adunarea matricelor este comutativă, adică:
Element neutru. Adunarea matricelor admite matricea nulă ca element neutru, adică:
- astfel încât
Element opus. Orice matrice are un opus, notat astfel încât:
Înmulțirea cu scalari a matricelor
Fie și Se numește produsul dintre scalarul și matricea A, matricea notată definită prin
- Observație
A înmulți o matrice cu un scalar revine la a înmulți toate elementele matricei cu acest scalar. Deci:
Proprietăți ale înmulțirii matricelor cu scalari
Înmulțirea matricelor
Format:Articol principal Există mai multe tipuri de produse ale matricilor. Operația prezentată în continuare este cunoscută sub denumirea de înmulțirea matricială.[3]
Fie
Produsul dintre matricele A și B (în această ordine), notat este matricea definită prin:
- Observații
Produsul a două matrice nu se poate efectua întotdeauna decât dacă adică numărul de coloane ale lui A este egal cu numărul de linii ale lui B, când se obține o matrice
Dacă matricele sunt pătrate atunci are sens întotdeauna atât cât și iar în general, adică înmulțirea matricelor nu este comutativă.
Proprietățile înmulțirii matricelor
Asociativitatea înmulțirii. Înmulțirea matricelor este asociativă, adică:
Distributivitatea înmulțirii față de adunare. Înmulțirea matricelor este distributivă în raport cu adunarea matricelor, adică:
matrice pentru care au sens operațiile de adunare și înmulțire.
Dacă este matricea unitate, atunci:
se spune că este element neutru.
Determinanți
Format:Articol principal Dacă este o matrice pătrată cu elemente din Format:Math, atunci numărul:
se numește determinantul lui Format:Mvar.
Note
- ↑ Forma matrice este impusă de Dicționarul ortografic, ortoepic și morfologic al limbii române (2005).
- ↑ Forma matrici apare în tratate de specialitate și cursuri universitare, de exemplu:
Format:Citat carte
Țițeica, Șerban: Mecanică cuantică, Editura Academiei RSR, București, 1984, V: Spații vectoriale finit-dimensionale, pp. 83–108. - ↑ Anca Ignat, Calcul numeric Format:Webarchive (curs 2, 2022, p. 2), Universitatea „Alexandru Ioan Cuza” din Iași, accesat 2023-06-13
Bibliografie
- Academia Română, Institutul de Lingvistică „Iorgu Iordan - Al. Rosetti”, Dicționarul ortografic, ortoepic și morfologic al limbii române, Ediția a II-a revăzută și adăugită, Editura Univers Enciclopedic, București, 2005 ISBN 973-637-087-x
- Mădălina Roxana Buneci, Elemente de analiză matricială, (curs) utgjiu.ro, 2007
Lectură suplimentară
- Tiberiu Ionescu, Grafuri, aplicații, vol. I, (pp.71-143 & passim) Editura Didactică și Pedagogică, București - 1973;
- Alexandru Al. Roșu, Teoria grafelor, algoritmi, aplicații (cap. 4. Matrice asociate grafelor, pp.98-113 & passim), Editura Militară, București - 1974.