Teorema lui Fermat

De la testwiki
Sari la navigare Sari la căutare

Teorema lui Fermat este o teoremă de analiză matematică, numită astfel după Pierre de Fermat. Ea dă o metodă de a găsi punctele de maxim și minim ale unei funcții derivabile. Valoarea derivatei în aceste puncte este 0. Astfel, problema determinării punctelor de maxim și minim ale unei funcții se reduce la obținerea soluțiilor unei ecuații. Punctele de extrem sunt incluse în mulțimea punctelor staționare, puncte unde derivata e nulă.

Enunț

Fie f:(a,b) o funcție și se presupune că x0(a,b) este un punct de maxim (sau minim) local al funcției f. Dacă f este derivabilă în x0 atunci f(x0)=0.

Demonstrație

Presupunem că x0 este un maxim (o considerație similară se poate face în cazul că x0 este un minim). Atunci δ>0 astfel ca (x0δ,x0+δ)(a,b) și este valabilă f(x0)f(x)x cu |xx0|<δ. Prin urmare pentru orice h(0,δ)

f(x0+h)f(x0)h0.

Deoarece limita acestui raport când h tinde spre 0 există și este egală cu f(x0) se trage concluzia că f(x0)0. Pe de altă parte, pentru h(δ,0) avem

f(x0+h)f(x0)h0

unde, de asemenea, limita când h tinde spre 0 există și este egală cu f(x0) se trage concluzia că f(x0)0.

Prin urmare rezultă că f(x0)=0.

Vezi și

Legături externe