Fișier:Sphere wireframe.svg
De la testwiki
Sari la navigare
Sari la căutare
Mărimea acestei previzualizări PNG a acestui fișier SVG: 400 × 400 pixeli. Alte rezoluții: 240 × 240 pixeli | 480 × 480 pixeli | 768 × 768 pixeli | 1.024 × 1.024 pixeli | 2.048 × 2.048 pixeli.
Fișier original (Fișier SVG, cu dimensiunea nominală de 400 × 400 pixeli, mărime fișier: 8 KB)
Acest fișier provine de la Wikimedia Commons și poate fi folosit și în cadrul altor proiecte. Descrierea de mai jos poate fi consultată la pagina de descriere a fișierului.
Descriere fișier
| DescriereSphere wireframe.svg |
English: Sphere wireframe - orthogonal projection of a sphere. The image shows lines, which are drawn as they were painted onto the surface of a sphere. The angular distance between two lines is 10°. The SVG file is created by the below C++-program, which calculates each edge of a line as an ellipse-bow. The backside of the sphere has an opacity of 0.25. The axis tilt is 52.5°. |
| Dată | |
| Sursă | Operă proprie |
| Autor | Geek3 |
| Alte versiuni | Sphere wireframe 10deg 10r.svg |
Source Code
This image can be completely generated by the following source code. If you have the gnu compiler collection installed, the programm can be compiled by the following commands:
g++ sphere_wireframe.cpp -o sphere_wireframe
and run :
./sphere_wireframe > Sphere_wireframe.svg
It creates file Sphere_wireframe.svg in working directory. This file can be viewed using rsvg-view program :
rsvg-view Sphere_wireframe.svg
Here is cpp code in file : sphere_wireframe.cpp
/* sphere - creates a svg vector-graphics file which depicts a wireframe sphere
*
* Copyright (C) 2008 Wikimedia foundation
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, you can either send email to this
* program's author (see below) or write to:
* The Free Software Foundation, Inc.
* 51 Franklin Street, Fifth Floor
* Boston, MA 02110-1301 USA
*/
/* The expressions in this code are not proven to be correct.
* Hence this code probably contains lots of bugs. Be aware! */
#include <iostream>
#include <cmath>
#include <cstdlib>
#include <cstring>
using namespace std;
const double PI = 3.1415926535897932;
const double DEG = PI / 180.0;
/********************************* settings **********************************/
int n_lon = 18; // number of latitude fields (18 => 10° each)
int n_lat = 18; // half number of longitude fields (18 => 10° each)
double lon_offset = 2.5 * DEG; // offset of the meridians
double w = 52.5 * DEG; // axial tilt (0° => axis is perpendicular to image plane)
double stripe_grad = 0.5 * DEG; // width of each line
int image_size = 400; // width and height of the image in pixels
double back_opacity = 0.25; // opacity of the sphere's backside
char color[] = "#334070"; // color of lines
int istep = 2; // svg code indentation step
/*****************************************************************************/
double sqr(double x)
{
return(x * x);
}
// commands for svg-code:
void indent(int n, bool in_tag = false)
{
n *= istep;
if (in_tag) n += istep + 1;
for (int i = 0; i < n; i++) cout << " ";
}
void M()
{
cout << "M ";
}
void Z()
{
cout << "Z ";
}
void xy(double x, double y)
{
cout << x << ",";
cout << y << " ";
}
void arc(double a, double b, double x_axis_rot, bool large_arc, bool sweep)
{ // draws an elliptic arc
if (b < 0.5E-6)
{ // flat ellipses are not rendered properly => use line
cout << "L ";
}
else
{
cout << "A ";
cout << a << ","; // semi-major axis
cout << b << " "; // semi-minor axis
cout << x_axis_rot << " ";
cout << large_arc << " ";
cout << sweep << " ";
}
}
void circle(bool clockwise)
{
M();
xy(-1, 0);
arc(1, 1, 0, 0, !clockwise);
xy(1, 0);
arc(1, 1, 0, 0, !clockwise);
xy(-1, 0);
Z();
}
void start_svg_file()
{
cout << "<?xml version=\"1.0\" encoding=\"UTF-8\" standalone=\"no\"?>\n";
cout << "<svg id=\"Sphere_wireframe\"\n";
cout << " version=\"1.1\"\n";
cout << " baseProfile=\"full\"\n";
cout << " xmlns=\"http://www.w3.org/2000/svg\"\n";
cout << " xmlns:xlink=\"http://www.w3.org/1999/xlink\"\n";
cout << " width=\"" << image_size << "\"\n";
cout << " height=\"" << image_size << "\">\n\n";
cout << " <title>Sphere wireframe</title>\n\n";
cout << " <desc>\n";
cout << " about: http://commons.wikimedia.org/wiki/Image:Sphere_wireframe.svg\n";
cout << " rights: GNU Free Documentation license,\n";
cout << " Creative Commons Attribution ShareAlike license\n";
cout << " </desc>\n\n";
cout << " <g id=\"sphere\" transform=\"scale(" << 0.5 * image_size;
cout << ", " << -0.5 * image_size << ") translate(1, -1)\">\n";
}
void end_svg_file()
{
cout << " </g>\n</svg>\n";
}
int main (int argc, char *argv[])
{
// accept -lat and -lon as parameter
for (int i = 2; i < argc; i++)
{
if (isdigit(argv[i][0]) || (sizeof(argv[i]) > sizeof(char)
&& isdigit(argv[i][1])
&& (argv[i][0] == '.' || argv[i][0] == '-')))
{
if (strcmp(argv[i - 1], "-lon") == 0)
{
lon_offset = atof(argv[i]) * DEG;
}
if (strcmp(argv[i - 1], "-lat") == 0)
{
w = atof(argv[i]) * DEG;
}
}
}
double cosw = cos(w), sinw = sin(w);
double d = 0.5 * stripe_grad;
start_svg_file();
int ind = 2; // initial indentation level
indent(ind);
cout << "<g id=\"sphere_back\" transform=\"rotate(180)\" ";
cout << "opacity=\"" << back_opacity << "\">\n";
indent(++ind);
cout << "<g id=\"sphere_half\">\n";
// meridians
indent(++ind); cout << "<g id=\"meridians\"\n";
indent(ind++, true);
cout << "style=\"stroke:none; fill:" << color << "; fill_rule:evenodd\">\n";
double a = abs(cos(d));
for (int i_lon = 0; i_lon < n_lat; i_lon++)
{ // draw one meridian
double longitude = lon_offset + (i_lon * 180.0 / n_lat) * DEG;
double lon[2];
lon[0] = longitude + d;
lon[1] = longitude - d;
indent(ind);
cout << "<path id=\"meridian";
cout << i_lon << "\"\n";
indent(ind, true);
cout << "d=\"";
double axis_rot = atan2(-1.0 / tan(longitude), cosw);
if (sinw < 0)
axis_rot += PI;
double w2 = sin(longitude) * sinw;
double b = abs(w2 * cos(d));
double sinw1 = sin(d) / sqrt(1.0 - sqr(sin(longitude) * sinw));
if (abs(sinw1) >= 1.0)
{ // stripe covers edge of the circle
double w3 = sqrt(1.0 - sqr(w2)) * sin(d);
circle(false);
// ellipse
M();
xy(sin(axis_rot) * w3 - cos(axis_rot) * a,
-cos(axis_rot) * w3 - sin(axis_rot) * a);
arc(a, b, axis_rot / DEG, 0, 0);
xy(sin(axis_rot) * w3 + cos(axis_rot) * a,
-cos(axis_rot) * w3 + sin(axis_rot) * a);
arc(a, b, axis_rot / DEG, 0, 0);
xy(sin(axis_rot) * w3 - cos(axis_rot) * a,
-cos(axis_rot) * w3 - sin(axis_rot) * a);
Z();
}
else
{ // draw a disrupted ellipse bow
double w1 = asin(sinw1);
M();
xy(-cos(axis_rot + w1), -sin(axis_rot + w1));
arc(a, b, axis_rot / DEG, 1, 0);
xy(cos(axis_rot - w1), sin(axis_rot - w1));
arc(1, 1, 0, 0, 1);
xy(cos(axis_rot + w1), sin(axis_rot + w1));
arc(a, b, axis_rot / DEG, 0, 1);
xy(-cos(axis_rot - w1), -sin(axis_rot - w1));
arc(1, 1, 0, 0, 1);
xy(-cos(axis_rot + w1), -sin(axis_rot + w1));
}
Z();
cout << "\" />\n";
}
indent(--ind); cout << "</g>\n";
cout << endl;
// circles of latitude
indent(ind); cout << "<g id=\"circles_of_latitude\"\n";
indent(ind, true);
cout << "style=\"stroke:none; fill:" << color << "; fill_rule:evenodd\">\n";
ind++;
for (int i_lat = 1; i_lat < n_lon; i_lat++)
{ // draw one circle of latitude
double latitude = (i_lat * 180.0 / n_lon - 90.0) * DEG;
double lat[2];
lat[0] = latitude + d;
lat[1] = latitude - d;
double x[2], yd[2], ym[2];
for (int i = 0; i < 2; i++)
{
x[i] = abs(cos(lat[i]));
yd[i] = abs(cosw * cos(lat[i]));
ym[i] = sinw * sin(lat[i]);
}
double h[4]; // height of each point above image plane
h[0] = sin(lat[0] + w);
h[1] = sin(lat[0] - w);
h[2] = sin(lat[1] + w);
h[3] = sin(lat[1] - w);
if (h[0] > 0 || h[1] > 0 || h[2] > 0 || h[3] > 0)
{ // at least any part visible
indent(ind);
cout << "<path id=\"circle_of_latitude";
cout << i_lat << "\"\n";
indent(ind, true);
cout << "d=\"";
for (int i = 0; i < 2; i++)
{
if ((h[2*i] >= 0 && h[2*i+1] >= 0)
&& (h[2*i] > 0 || h[2*i+1] > 0))
{ // complete ellipse
M();
xy(-x[i], ym[i]); // startpoint
for (int z = 1; z > -2; z -= 2)
{
arc(x[i], yd[i], 0, 1, i);
xy(z * x[i], ym[i]);
}
Z();
if (h[2-2*i] * h[3-2*i] < 0)
{ // partly ellipse + partly circle
double yp = sin(lat[1-i]) / sinw;
double xp = sqrt(1.0 - sqr(yp));
if (sinw < 0)
{
xp = -xp;
}
M();
xy(-xp, yp);
arc(x[1-i], yd[1-i], 0,
sin(lat[1-i]) * cosw > 0, cosw >= 0);
xy(xp, yp);
arc(1, 1, 0, 0, cosw >= 0);
xy(-xp, yp);
Z();
}
else if (h[2-2*i] <= 0 && h[3-2*i] <= 0)
{ // stripe covers edge of the circle
circle(cosw < 0);
}
}
}
if ((h[0] * h[1] < 0 && h[2] <= 0 && h[3] <= 0)
|| (h[0] <= 0 && h[1] <= 0 && h[2] * h[3] < 0))
{
// one slice visible
int i = h[0] <= 0 && h[1] <= 0;
double yp = sin(lat[i]) / sinw;
double xp = sqrt(1.0 - yp * yp);
M();
xy(-xp, yp);
arc(x[i], yd[i], 0, sin(lat[i]) * cosw > 0, cosw * sinw >= 0);
xy(xp, yp);
arc(1, 1, 0, 0, cosw * sinw < 0);
xy(-xp, yp);
Z();
}
else if (h[0] * h[1] < 0 && h[2] * h[3] < 0)
{
// disrupted ellipse bow
double xp[2], yp[2];
for (int i = 0; i < 2; i++)
{
yp[i] = sin(lat[i]) / sinw;
xp[i] = sqrt(1.0 - sqr(yp[i]));
if (sinw < 0) xp[i] = -xp[i];
}
M();
xy(-xp[0], yp[0]);
arc(x[0], yd[0], 0, sin(lat[0]) * cosw > 0, cosw >= 0);
xy(xp[0], yp[0]);
arc(1, 1, 0, 0, 0);
xy(xp[1], yp[1]);
arc(x[1], yd[1], 0, sin(lat[1]) * cosw > 0, cosw < 0);
xy(-xp[1], yp[1]);
arc(1, 1, 0, 0, 0);
xy(-xp[0], yp[0]);
Z();
}
cout << "\" />\n";
}
}
for (int i = 0; i < 3; i++)
{
indent(--ind);
cout << "</g>\n";
}
indent(ind--);
cout << "<use id=\"sphere_front\" xlink:href=\"#sphere_half\" />\n";
end_svg_file();
}
Licențiere
Eu, deținătorul drepturilor de autor ale acestei opere, prin prezenta îmi public lucrarea sub următoarele licențe:
| Se permite copierea, distribuirea și/sau modificarea acestui document conform termenilor Documentației de licență liberă GNU, versiunea 1.2 sau orice altă versiune ulterioară publicată de Free Software Foundation, fără părți neschimbabile, texte de pe copertele principale și finale. O copie a acestei licențe este inclusă în secțiunea numită Documentația de licență liberă GNU.http://www.gnu.org/copyleft/fdl.htmlGFDLGNU Free Documentation Licensetruetrue |
Acest fișier a fost eliberat sub licența Creative Commons Atribuire și distribuire în condiții identice 3.0 Neadaptată, 2.5 Generică, 2.0 Generică și 1.0 Generică.
- Sunteți liber:
- să partajați cu alții – aveți dreptul de a copia, distribui și transmite opera
- să adaptați – aveți dreptul de a adapta opera
- În următoarele condiții:
- atribuind – Trebuie să atribuiți opera corespunzător, introducând o legătură către licență și indicând dacă ați făcut schimbări. Puteți face asta prin orice metodă rezonabilă, dar nu într-un fel care ar sugera faptul că persoana ce a licențiat conținutul v-ar susține sau ar aproba folosirea de către dumneavoastră a operei sale.
- partajând în condiții identice – Dacă modificați, transformați sau creați pe baza acestei opere, trebuie să distribuiți opera rezultată doar sub aceeași licență sau sub o licență similară acesteia.
Puteți alege licența pe care o doriți.
Captions
Add a one-line explanation of what this file represents
Items portrayed in this file
subiectul reprezentat
noiembrie 2008
Istoricul fișierului
Apăsați pe Data și ora pentru a vedea versiunea fișierului trimisă la momentul respectiv.
| Data și ora | Miniatură | Dimensiuni | Utilizator | Comentariu | |
|---|---|---|---|---|---|
| actuală | 23 noiembrie 2008 17:10 | 400x400 (8 KB) | wikimediacommons>Geek3 | {{Information |Description={{en|1=Sphere wireframe - the image shows lines, which are drawn as they were painted onto the surface of a sphere. The distance between two lines is 10°. The svg file is created by the below c++-program, which calculates each |
Utilizarea fișierului
Următoarea pagină folosește acest fișier: