Fișier:InfiniteSquareWellAnimation.gif

De la testwiki
Sari la navigare Sari la căutare
InfiniteSquareWellAnimation.gif (300 × 280 pixeli, mărime fișier: 1.006 KB, tip MIME: image/gif, în buclă, 139 imagini, 14 s)

Acest fișier provine de la Wikimedia Commons și poate fi folosit și în cadrul altor proiecte. Descrierea de mai jos poate fi consultată la pagina de descriere a fișierului.

Descriere fișier

Descriere
English: Trajectories of a particle in a box (also called an infinite square well) in classical mechanics (A) and quantum mechanics (B-F). In (A), the particle moves at constant velocity, bouncing back and forth. In (B-F), wavefunction solutions to the Time-Dependent Schrodinger Equation are shown for the same geometry and potential. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the wavefunction. (B,C,D) are stationary states (energy eigenstates), which come from solutions to the Time-Independent Schrodinger Equation. (E,F) are non-stationary states, solutions to the Time-Dependent but not Time-Independent Schrodinger Equation. Both (E) and (F) are randomly-generated superpositions of the four lowest-energy eigenstates, (B-D) plus a fourth not shown.
Dată
Sursă Operă proprie
Autor Sbyrnes321
(*Source code written in Mathematica 6.0 by Steve Byrnes, Apr. 2011.
  This source code is public domain.*)
  
(*Shows classical and quantum trajectory animations for an infinite-square-well potential.
  Assumes L=hbar=1, m=2*pi^(-2), so that the nth energy eigenstate has energy n^2.*)

ClearAll["Global`*"]

(***Wavefunctions of the energy eigenstates***)
psi[n_, x_] := Sin[n*Pi*x]*2^(1/2);
energy[n_] := n^2;
psit[n_, x_, t_] := psi[n, x] Exp[-I*energy[n]*t];

(***A random time-dependent state***)
SeedRandom[1];
CoefList = Table[Random[]*Exp[2*Pi*I*Random[]], {n, 1, 4}];
CoefList = CoefList/Norm[CoefList];
Randpsi[x_, t_] := Sum[CoefList[[n]]*psit[n, x, t], {n, 1, 4}];

(***Another random time-dependent state***)
SeedRandom[2];
CoefList2 = Table[Random[]*Exp[2*Pi*I*Random[]], {n, 1, 3}];
CoefList2 = CoefList2/Norm[CoefList2];
Randpsi2[x_, t_] := Sum[CoefList2[[n]]*psit[n, x, t], {n, 1, 3}];

(***Set default style for plots***)
SetOptions[Plot,
  {PlotRange -> {{-.05, 1.05}, {-2.5, 2.5}}, Ticks -> None, 
   PlotStyle -> {Directive[Thick, Blue], Directive[Thick, Pink]}, 
   Axes -> {True, False}}];
SetOptions[ListPlot, {PlotRange -> {{-.05, 1.05}, {-2.5, 2.5}}, Axes -> False}];

(***Draw walls***)
walls = ListPlot[{{{0, -2.5}, {0, 2.5}}, {{1, -2.5}, {1, 2.5}}}, 
   Joined -> True, PlotStyle -> {{Thick, Black}, {Thick, Black}}];

(***Make the classical plot...a red ball bounces back and forth.***)
classicaltrajectory[t_, left_, right_] := 2*(right - left)*Abs[t - Round[t]] + left;
classicalball[t_, left_, right_] := ListPlot[{{classicaltrajectory[t, left, right], 0}},
   PlotStyle -> Directive[Red, AbsolutePointSize[15]]];
classical[t_, label_] := Show[walls, classicalball[t, .1, .9], PlotLabel -> label];
(***Make the quantum plots***)
plotpsi[n_, t_, label_] := Show[walls,
   Plot[{Re[psit[n, x, t]], Im[psit[n, x, t]]}, {x, 0, 1}],
   PlotLabel -> label, Axes -> {True, False}, Ticks -> None];
plotrand[t_, label_] := Show[walls,
   Plot[{Re[Randpsi[x, t]], Im[Randpsi[x, t]]}, {x, 0, 1}],
   PlotLabel -> label, Axes -> {True, False}, Ticks -> None];
plotrand2[t_, label_] := Show[walls, 
   Plot[{Re[Randpsi2[x, t]], Im[Randpsi2[x, t]]}, {x, 0, 1}], 
   PlotLabel -> label, Axes -> {True, False}, Ticks -> None];
(***Put all the plots together***)
MakeFrame[t_] := GraphicsGrid[
   {{classical[3 t/(4 Pi), "A"], plotpsi[1, t, "B"]},
    {plotpsi[2, t, "C"], plotpsi[3, t, "D"]},
    {plotrand[t, "E"], plotrand2[t, "F"]}},
   Frame -> All, ImageSize -> 300];
output = Table[MakeFrame[t], {t, 0, 4 Pi*138/139, 4 Pi/139}];
SetDirectory["C:\\Users\\Steve\\Desktop"]
Export["test.gif", output, "DisplayDurations" -> 10]

Licențiere

Eu, deținătorul drepturilor de autor ale acestei opere, prin prezenta îmi public lucrarea sub următoarea licență:
Creative Commons CC-Zero Acest fișier a fost eliberat sub licența Creative Commons CC0 1.0 Universal Public Domain Dedication.
Persoana care a asociat o operă cu acest document o oferă domeniului public, renunțând la toate drepturile asupra operei, în toată lumea, atât în ce privește drepturile de autor cât și orice alte drepturi juridice conexe pe care le avea asupra operei, în măsura permisă de lege. Puteți copia, modifica sau distribui opera, inclusiv în scopuri comerciale, fără a fi necesară permisiunea autorului.

Captions

Add a one-line explanation of what this file represents

Items portrayed in this file

subiectul reprezentat

26 aprilie 2011

Istoricul fișierului

Apăsați pe Data și ora pentru a vedea versiunea fișierului trimisă la momentul respectiv.

Data și oraMiniaturăDimensiuniUtilizatorComentariu
actuală27 aprilie 2011 07:39Miniatură pentru versiunea din 27 aprilie 2011 07:39300x280 (1.006 KB)wikimediacommons>Sbyrnes321{{Information |Description ={{en|1=Trajectories of a particle in a box (also called an infinite square well) in classical mechanics (A) and quantum mechanics (B-F). In (A), the particle moves at constant velocity, bouncing back and forth. In (B-F), wav

Următoarea pagină folosește acest fișier: