InfiniteSquareWellAnimation.gif(300 × 280 pixeli, mărime fișier: 1.006 KB, tip MIME: image/gif, în buclă, 139 imagini, 14 s)
Acest fișier provine de la Wikimedia Commons și poate fi folosit și în cadrul altor proiecte.
Descrierea de mai jos poate fi consultată la pagina de descriere a fișierului.
Descriere fișier
DescriereInfiniteSquareWellAnimation.gif
English: Trajectories of a particle in a box (also called an infinite square well) in classical mechanics (A) and quantum mechanics (B-F). In (A), the particle moves at constant velocity, bouncing back and forth. In (B-F), wavefunction solutions to the Time-Dependent Schrodinger Equation are shown for the same geometry and potential. The horizontal axis is position, the vertical axis is the real part (blue) or imaginary part (red) of the wavefunction. (B,C,D) are stationary states (energy eigenstates), which come from solutions to the Time-Independent Schrodinger Equation. (E,F) are non-stationary states, solutions to the Time-Dependent but not Time-Independent Schrodinger Equation. Both (E) and (F) are randomly-generated superpositions of the four lowest-energy eigenstates, (B-D) plus a fourth not shown.
Persoana care a asociat o operă cu acest document o oferă domeniului public, renunțând la toate drepturile asupra operei, în toată lumea, atât în ce privește drepturile de autor cât și orice alte drepturi juridice conexe pe care le avea asupra operei, în măsura permisă de lege. Puteți copia, modifica sau distribui opera, inclusiv în scopuri comerciale, fără a fi necesară permisiunea autorului.
http://creativecommons.org/publicdomain/zero/1.0/deed.enCC0Creative Commons Zero, Public Domain Dedicationfalsefalse
Captions
Add a one-line explanation of what this file represents
{{Information |Description ={{en|1=Trajectories of a particle in a box (also called an infinite square well) in classical mechanics (A) and quantum mechanics (B-F). In (A), the particle moves at constant velocity, bouncing back and forth. In (B-F), wav