Reflectivitate

De la testwiki
Versiunea din 29 iulie 2024 10:25, autor: imported>Turbojet (wl)
(dif) ← Versiunea anterioară | Versiunea curentă (dif) | Versiunea următoare → (dif)
Sari la navigare Sari la căutare
Fișier:Reflectivitate.gif
Fig.1:Pentru lămurirea notaţiilor (unghiurile ϕ lipsesc)

Reflectivitatea suprafeței unui material M este fracțiunea din energia radiației electromagnetice incidente care este reflectată de suprafață. Pentru o suprafață perfect plană (netedă) o undă monocromatică incidentă este parțial reflectată ca pe o oglindă: direcția de propagare a undei reflectate este cuprinsă în planul direcției de incidență și al normalei la suprafață iar unghiurile celor doua direcții cu normala sunt egale. Multe din suprafețele reale nu sunt netede ci au neregularități: o undă incidentă pe ele este parțial absorbită si parțial reflectată (împrăștiată) în toate direcțiile. Pentru caracterizarea acestor suprafețe se folosește o definiție mai complicată a reflectivității. Considerăm pentru aceasta (vezi Fig.1) un fascicol de raze incidente cu deschiderea dω pe un element de suprafață oarecare dA cu normala 𝐧 din direcția 𝐧1 dată de unghiurile (θ,ϕ) ( 𝐧1𝐧=cosθ, produsul scalar dintre direcția considerată și normala la elementul de suprafață ). Energia care cade în unitatea de timp pe dA este caracterizată de intensitatea I(λ,θ,ϕ) (fascicolul conține lungimi de undă între λ si λ+dλ ):

d4E=I(λ,θ,ϕ)dtdAcosθdωdλ.

Energia reflectată de elementul

dA

într-un unghi solid

dωr

împrejurul direcției

𝐧r

dată de unghiurile

ωr

,

ϕr

este:

d4Er=Ir(λ,θr,ϕr,θ,ϕ)dAdtcosθrdωrdλ.

Intensitatea

Ir(λ,θr,ϕr,θ,ϕ)

este proporțională cu fluxul luminos incident :

I(λ,θr,ϕr,θ,ϕ)=ρ(λ,θr,ϕr,θ,ϕ)I(λ,θ,ϕ)cosθdω.

Coeficientul

ρ(λ,θr,ϕr,θ,ϕ)

se numește reflectivitatea ("dublu direcțională") a suprafeței. Ea depinde de temperatura materialului, ceea ce nu indicăm explicit. Reflectivitatea are proprietatea remarcabilă că este simetrică față de cele două perechi de unghiuri[1]:

ρ(λ,θr,ϕr,θ,ϕ)=ρ(λ,θ,ϕ,θr,ϕr).

Cunoscând pe ρ, putem calcula energia reflectată totală de la o undă incidentă din direcția (θ,ϕ) pe elementul dA integrând peste unghiurile θr, ϕr:

d4E=(ρ(λ,θ,ϕ,θr,ϕr)cosθrdωr)I(λ,θ,ϕ)cosθdωdtdAdλ


Ri(λ,θ,ϕ)I(λ,θ,ϕ)cosθdλdωdAdt.

Acest coeficient de reflexie

Ri

(indicele

i

provine de la "incident") are proprietatea că :

Ri(λ,θ,ϕ)+A(λ,θ,ϕ)=1

unde

A(λ,θ,ϕ)

este absorptivitatea suprafeței. În acest context (al legilor de radiație ale lui Kirchhoff),

Ri

este numit "reflectivitate". Alternativ, putem să iluminăm suprafața din toate direcțiile și să calculăm cantitatea de energie reflectată în direcția (θrr). Dacă iluminarea este izotropă (I independent de θ,φ) atunci, definind

Rr(θr,ϕr)=Ir(θr,ϕr)I

(indicele

r

provine de la "reflexie") verificăm că, drept consecință a simetriei funcției

ρ(λ,θr,ϕr,θ,ϕ)

, pentru orice pereche (θ,φ) de unghiuri:

Rr(θ,ϕ)=Ri(θ,ϕ).

În general, aceasta nu e adevărat.

Se spune că o suprafață "reflectă după legea lui Lambert" [2]dacă funcția ρ(λ,θr,ϕr,θ,ϕ) nu depinde deloc de setul de variabile θr,ϕr,θ,ϕ. Un obiect plan, care reflectă după legea lui Lambert, luminat sub un unghi fix din exterior pare la fel de luminos oricare ar fi unghiul din care e privit. O sferă uniform luminată și care reflectă după legea lui Lambert trebuie sa aibă o luminozitate care să tindă treptat (ca și cos θ) la zero atunci când raza incidentă devine tangentă la ea (θ→π/2). În cazul lunii, trecerea între lumină și obscuritate este destul de bruscă, ceea ce arată că luna nu este un obiect "lambertian". Folosind simetria funcției ρ(λ,θr,ϕr,θ,ϕ) deducem că, la incidență normală, reflectivitatea la unghiuri θr mari are valoare mare.

Daca suprafața este netedă, reflectivitatea ei este caracterizată de o singură funcție (pentru lumină nepolarizată) R(θ). Aceasta poate fi calculată cu ajutorul ecuațiilor lui Maxwell cunoscând indicii de refracție și coeficienții de absorbție ale celor două medii separate de suprafață (Formulele lui Fresnel[3]).

Note

Format:References

Bibliografie

    Jackson, J.D.: Classical Electrodynamics, John Wiley & Sons, 1962
    Siegel, R.,Howell, J.R., Lohrengel, J.: Wärmeübertragung durch Strahlung, Teil I, Springer-Verlag 1988, ISBN 3-540-18496-1
  1. Siegel, Howell, Lohrengel, op.cit.p.72
  2. vezi și articolul despre emisivitate
  3. R.Siegel,J.R.Howell,J.Lohrengel, op.cit.Kap.4. J.D.Jackson,op.cit.,ch.VII