Fișier:Friedmann universes.svg

De la testwiki
Sari la navigare Sari la căutare
Fișier original (Fișier SVG, cu dimensiunea nominală de 620 × 500 pixeli, mărime fișier: 3 KB)

Acest fișier provine de la Wikimedia Commons și poate fi folosit și în cadrul altor proiecte. Descrierea de mai jos poate fi consultată la pagina de descriere a fișierului.

Descriere fișier

Descriere
English: The age and ultimate fate of the universe can be determined by measuring the Hubble constant today and extrapolating with the observed value of the deceleration parameter, uniquely characterized by values of density parameters (ΩM for matter and ΩΛ for dark energy). A "closed universe" with ΩM > 1 and ΩΛ = 0 comes to an end in a Big Crunch and is considerably younger than its Hubble age. An "open universe" with ΩM ≤ 1 and ΩΛ = 0 expands forever and has an age that is closer to its Hubble age. For the accelerating universe with nonzero ΩΛ that we inhabit, the age of the universe is coincidentally very close to the Hubble age.


Intended as a replacement for Universe.svg and Universos.gif.
Dată
Sursă Operă proprie
Autor BenRG
SVG dezvoltare
InfoField
 Sursa acestui fișier SVG este validă.
 Această imagine vectorială a fost creată cu Other tools
  This diagram uses embedded text that can be easily translated using a text editor.
This diagram supersedes the file Universe.svg. It is recommended to use this file rather than the other one.

Deutsch  English  español  فارسی  français  magyar  Bahasa Indonesia  italiano  日本語  한국어  македонски  മലയാളം  Nederlands  polski  prūsiskan  português do Brasil  русский  slovenščina  svenska  中文(简体)  中文(繁體)  +/−

minor quality

Formulas

This diagram uses the following exact solutions to the Friedmann equations:

See also

Some of the shown models are implemented as an animation at Cosmos-animation.

Perl code

use strict;
use Svg;
use Math::Trig qw(sinh cosh acos asinh acosh pi);

sub ScaleFunc {
	my ($H0, $M0, $with_lambda) = @_;
	if ($M0 == 1) {
		my $q0 = 2/(3*$H0);
		return sub { my ($q) = @_; ($q - $q0, (1.5 * $H0 * $q) ** (2/3)) };
	}
	if ($with_lambda) {
		my $L0 = 1 - $M0;
		# assume 0 < $M0 < 1
		my $a = ($M0/$L0) ** (1/3);
		my $b = 1.5 * $H0 * sqrt($L0);
		my $q0 = asinh(sqrt($L0/$M0)) / $b;
		return sub { my ($q) = @_; ($q - $q0, $a * (sinh($b * $q) ** (2/3))) }
	} else {
		# \Omega_{\Lambda_0} = 0
		my $k0 = 1 - $M0;
		if ($M0 == 0) {
			return sub { my ($q) = @_; ($q - 1/$H0, $q * $H0) }
		} else {
			my $a = $M0 / (2 * abs($k0));
			my $b = 1 / ($H0 * sqrt(abs($k0)));
			my $c = $a * $b;
			if ($M0 > 1) {
				my $d = $a * (2 / ($H0 * $M0) - acos(2/$M0 - 1) * $b);
				return sub { my ($q) = @_; ($c * ($q - sin($q)) + $d, $a * (1 - cos($q))) }
			} else {
				# 0 < M < 1
				my $d = $a * (acosh(2/$M0 - 1) * $b - 2 / ($H0 * $M0));
				return sub { my ($q) = @_; ($c * (sinh($q) - $q) + $d, $a * (cosh($q) - 1)) }
			}
		}
	}
}

sub SubscriptedText {
	my $text = shift;
	$text->add(shift);
	my $sub = 0;
	for my $t (@_) {
		$sub = !$sub;
		$text->tspan($sub ? (dy => 4, 'font-size' => 12) : (dy => -4))->add($t);
	}
}

my ($image_width,$image_height) = (620,500);
my ($origin_x, $origin_y) = (30.5,450.5);
my $pad_right = 70;
my ($tlo, $thi, $ahi) = (-15,18,2.5);

my $svg = new Svg(width => $image_width, height => $image_height);
#	$svg->rect(width => $image_width, height => $image_height, fill => 'gray');
$svg->defs()->marker(id => 'arrowhead', refX => 0, refY => 3, markerWidth => 10, markerHeight => 6, markerUnits => 'userSpaceOnUse', orient => 'auto')->path(d => 'M 0,0 L 10,3 L 0,6 z');
my $traces = $svg->group(stroke => 'black', 'stroke-width' => 2, fill => 'none');
my $axes = $svg->group(stroke => 'black', 'stroke-width' => 1, fill => 'none');
my $labels = $svg->group('font-family' => 'Nimbus Roman No9 L, Times, serif', 'font-size' => 20, 'text-anchor' => 'middle', stroke => 'none', fill => 'black');
my $H0 = 1 / 13.95;
my $M0 = 0.279;
my ($graphscalex,$graphscaley) = (($image_width-$origin_x-$pad_right)/($thi-$tlo), -$origin_y/$ahi);
my ($graphofsx,$graphofsy) = ($origin_x - $tlo * $graphscalex, $origin_y);
for my $z ([0,0,30,'none'],[$M0,0,3.17,'1,4'],[1,0,26,'2,2'],[6,0,2*pi,'1,3,4,3'],[$M0,1,27,'5,3']) {
	my ($m0,$with_lambda,$max_q,$dashes) = @$z;
	my $f = ScaleFunc($H0,$m0,$with_lambda);
	my (@x,@y);
	for my $i (0..200) {
		($x[$i],$y[$i]) = &$f($i / 200 * $max_q);
	}
	$traces->path('stroke-dasharray' => $dashes, ($m0 == 6 ? () : ('marker-end' => 'url(#arrowhead)')), d => MakePath(\@x, \@y, $graphscalex, $graphscaley, $graphofsx, $graphofsy, 1));
}
$axes->line(x1 => $origin_x, y1 => $image_height-20, x2 => $origin_x, y2 => 20, 'marker-end' => 'url(#arrowhead)');
$axes->line(x1 => 10, y1 => $origin_y, x2 => $image_width - $pad_right + 10, y2 => $origin_y, 'marker-end' => 'url(#arrowhead)');
$labels->text(x => ($origin_x + $image_width) / 2, y => $image_height-10)->add('Billions of years from now');
my $path = '';
for my $gyr (-13.7, -10, -5, 0, 5, 10, 15) {
	my $x = int($gyr * $graphscalex + $graphofsx);
	my $y = $origin_y-5;
	$path .= "M$x.5,${y}l0,10";
	$labels->text(x => $x, y => $origin_y + 20)->add($gyr);
}
$axes->path(d => $path);
$labels->circle(cx => $graphofsx, cy => $graphscaley + $graphofsy, r => 4);
$labels->text(x => $graphofsx-5, y => $graphscaley + $graphofsy, 'text-anchor' => 'end')->add('Now');
$labels->text()->rotate(-90)->translate($origin_x - 8, $origin_y / 2)->add("Average distance between galaxies");
my $trace_labels = $labels->group('font-family' => 'DejaVu Serif, serif', 'font-size' => 16);
SubscriptedText($trace_labels->text(x => 465, y => 30, 'text-anchor' => 'end'), "\x{3A9}", 'M', " = 0.3, \x{3A9}", "\x{39B}", " = 0.7");
SubscriptedText($trace_labels->text(x => 520, y => 50, 'text-anchor' => 'start'), "\x{3A9}", 'M', ' = 0');
SubscriptedText($trace_labels->text(x => 535, y => 70, 'text-anchor' => 'start'), "\x{3A9}", 'M', ' = 0.3');
SubscriptedText($trace_labels->text(x => 540, y => 95, 'text-anchor' => 'start'), "\x{3A9}", 'M', ' = 1');
SubscriptedText($trace_labels->text(x => 540, y => 400, 'text-anchor' => 'start'), "\x{3A9}", 'M', ' = 6');

$svg->write('Friedmann universes.svg');

Licențiere

Public domain Eu, deținătorul drepturilor de autor ale acestei opere, o eliberez domeniului public. Aceasta se aplică în întreaga lume.
În anumite țări există posibilitatea ca acest lucru să nu fie legal posibil; în acest caz:
permit oricui să utilizeze această operă în orice scop, fără nicio condiție, atâta timp cât asemenea condiții nu sunt cerute de lege.

Captions

Add a one-line explanation of what this file represents
Solutions of the Friedmann Equations (not hand drawn)

Items portrayed in this file

subiectul reprezentat

23 septembrie 2009

image/svg+xml

Istoricul fișierului

Apăsați pe Data și ora pentru a vedea versiunea fișierului trimisă la momentul respectiv.

Data și oraMiniaturăDimensiuniUtilizatorComentariu
actuală23 septembrie 2009 23:09Miniatură pentru versiunea din 23 septembrie 2009 23:09620x500 (3 KB)wikimediacommons>BenRGNimbus Roman doesn't have Greek letters; switch to DejaVu Serif

Următoarea pagină folosește acest fișier: