Indicatorul lui Euler

De la testwiki
Versiunea din 19 decembrie 2024 19:14, autor: imported>Turbojet (Revenit asupra a 1 modificare a lui ~2024-11501 (D) identificată ca vandalism la ultima versiune a lui Strainubot. (TW))
(dif) ← Versiunea anterioară | Versiunea curentă (dif) | Versiunea următoare → (dif)
Sari la navigare Sari la căutare
Primele 100 de valori ale funcției lui Euler

Indicatorul lui Euler sau funcția lui Euler se notează cu φ(n) (unde n este un număr natural nenul) și contorizează numerele întregi pozitive mai mici sau egale cu n și prime cu acesta.

  • Exemple: φ(0) = 1 prin convenție; φ(1) = 1 ;φ(2) = 1 ; φ(3) = 2 ; φ(4) = 2 ;φ(5) = 4 ;φ(720) = 192 ; φ(p) = p-1 , dacă p este număr prim.
  • Primele 143 de valori ale lui φ(n) sunt:[1]
Format:Math pentru Format:Math
+ 0 1 2 3 4 5 6 7 8 9 10 11
0 Format:N/a 1 1 2 2 4 2 6 4 6 4 10
12 4 12 6 8 8 16 6 18 8 12 10 22
24 8 20 12 18 12 28 8 30 16 20 16 24
36 12 36 18 24 16 40 12 42 20 24 22 46
48 16 42 20 32 24 52 18 40 24 36 28 58
60 16 60 30 36 32 48 20 66 32 44 24 70
72 24 72 36 40 36 60 24 78 32 54 40 82
84 24 64 42 56 40 88 24 72 44 60 46 72
96 32 96 42 60 40 100 32 102 48 48 52 106
108 36 108 40 72 48 112 36 88 56 72 58 96
120 32 110 60 80 60 100 36 126 64 84 48 130
132 40 108 66 72 64 136 44 138 48 92 70 120
φ(n)=(p11)p1k11(pr1)prkr1

Aceasta se poate scrie și

φ(n)=np|n(11p)

unde produsul se face după numerele prime distincte pr.

Un număr nontotient este un număr întreg pozitiv n pentru care ecuația φ(x) = n nu are soluții.[2] Primele numere nontotiente sunt: 14, 26, 34, 38, 50, 62, 68, 74, 76, 86, 90, 94, 98... [3]

Teorema lui Euler

aφ(n)1(modn), unde (a, n) = 1 , φ(n) este indicatorul lui Euler, a este număr întreg și n>1 , natural.

Note

Legături externe

Format:Portal Format:Control de autoritate